VEGF stimulates tyrosine phosphorylation of β-catenin and small-pore endothelial barrier dysfunction.

نویسندگان

  • Alex W Cohen
  • José M Carbajal
  • Richard C Schaeffer
چکیده

The purpose of this study was to test the hypothesis that tyrosine phosphorylation signaling events and protein kinase C (PKC) activation mediate vascular endothelial growth factor-A165 (VEGF)-induced endothelial cell (EC) proliferation and barrier dysfunction in bovine pulmonary artery EC monolayers. A size-selective permeability assay showed that VEGF stimulated a delayed, prolonged (6-45 h), concentration-dependent (50-200 ng/ml, ∼1-4 nM) increase in the number of predominantly small-"pore" transport pathways (<60 Å) across EC monolayers. The tyrosine kinase inhibitor herbimycin A (HA) and the selective PKC inhibitor bisindolylmaleimide (BIM) prevented this phenomenon. After 6-24 h, VEGF-treated monolayers displayed an HA- and BIM-sensitive reorganization of β-catenin adherens junctions with fingerlike projections and the loss of β-catenin at sites of small paracellular hole formation. HA and BIM prevented the VEGF-induced increase in EC growth. HA blocked the VEGF-induced rapid and prolonged (10 min-45 h) increases in the phosphotyrosine (PY) contents of VEGF receptor 2, phospholipase C-γ1, paxillin, and β-catenin as well as ∼140- and 128- to 117-kDa proteins, whereas BIM inhibited only the tyrosine phosphorylation of β-catenin. These data suggest that VEGF initiates increased EC growth and chronic, small-pore endothelial barrier dysfunction by PY signaling through β-catenin that depends on PKC.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

The tyrosine phosphatase SHP2 regulates recovery of endothelial adherens junctions through control of β-catenin phosphorylation

Impaired endothelial barrier function results in a persistent increase in endothelial permeability and vascular leakage. Repair of a dysfunctional endothelial barrier requires controlled restoration of adherens junctions, comprising vascular endothelial (VE)-cadherin and associated β-, γ-, α-, and p120-catenins. Little is known about the mechanisms by which recovery of VE-cadherin-mediated cell...

متن کامل

Type 3 muscarinic acetylcholine receptor stimulation is a determinant of endothelial barrier function and adherens junctions integrity: role of protein-tyrosine phosphatase 1B

The main purpose of this study was to investigate whether type 3 muscarinic acetylcholine receptor (M3R) dysfunction induced vascular hyperpermeability. Transwell system analysis showed that M3R inhibition by selective antagonist 4-diphenylacetoxy-N-methylpiperidine methiodide (4-DAMP) and small interfering RNA both increased endothelial permeability. Using coimmunoprecipitation and Western blo...

متن کامل

Peroxynitrite-dependent activation of protein phosphatase type 2A mediates microvascular endothelial barrier dysfunction

AIMS We investigated the mechanism by which proinflammatory stimulation induces microvascular endothelial barrier dysfunction. Since protein phosphatase type 2A (PP2A) can mediate paracellular leak and can be inactivated by tyrosine phosphorylation in its catalytic subunit (PP2Ac), we hypothesized that microvascular endothelial cells exposed to proinflammatory stimulation produce peroxynitrite ...

متن کامل

ROCK mediates thrombin's endothelial barrier dysfunction.

Thrombin-induced endothelial monolayer hyperpermeability is thought to result from increased F-actin stress fiber-related contractile tension, a process regulated by the small GTP-binding protein Rho. We tested whether this process was dependent on the Rho-associated protein kinase, ROCK, using a specific ROCK inhibitor, Y-27632. The effects of Y-27632 on thrombin-induced myosin light chain pho...

متن کامل

S-nitrosylation regulates VE-cadherin phosphorylation and internalization in microvascular permeability.

The adherens junction complex, composed mainly of vascular endothelial (VE)-cadherin, β-catenin, p120, and γ-catenin, is the main element of the endothelial barrier in postcapillary venules.S-nitrosylation of β-catenin and p120 is an important step in proinflammatory agents-induced hyperpermeability. We investigated in vitro and in vivo whether or not VE-cadherin isS-nitrosylated using platelet...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • American journal of physiology. Heart and circulatory physiology

دوره 277 5  شماره 

صفحات  -

تاریخ انتشار 1999